
ISRAEL JOURNAL OF MATHEMATICS 9 5  (1996), 1-23 

REGULAR WEIGHTS OF FULL RANK 
ON STRONGLY REGULAR GRAPHS 

BY 

A. D. SANKEY* 

Department of Mathematics, Slippery Rock University 
Slippery Rock, PA 16057, USA 

e-mail: ads@sruvm.sru.edu 

ABSTRACT 

This work addresses the existence question for weighted coherent configu- 

rations in the special case of rank 3, symmetric cc's, which are equivalent 

to strongly regular graphs, and weights of values :1:1. Examples related to 

rank 3 group actions of AS, S4(q) and PSL3(4) are discussed and a com- 

plete account of the regular full rank weights on the lattice graph L2(n) is 
given. These are found to be either trivial or tensor products of pairs of 

weights whose coboundaries are regular 2-graphs. 

Introduct ion  

The theory of regular weights on coherent configurations (cc's) was introduced by 

D. G. Higman and developed in [8]. Cc's are combinatorial objects which are rife 

with algebraic structure. The adjacency algebra of a cc, or c o h e r e n t  a lgebra ,  

is parametrized by its invariants. Analysis of feasible parameter sets provides a 

starting point for investigation of the existence question. Much of the algebraic 

structure carries over to the weighted configurations, so the weighted adjacency 

algebra can be similarly parametrized. 
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There is a class of regular weights on rank 2 cc's which are equivalent to regular 

2-graphs. These have been studied by D. E. Taylor ([15]). The generalization 

to regular weights of higher rank is thus a natural extension of that  work. J. J. 

Seidel, D. E. Taylor and others have studied the connection between 2-graphs and 

sets of equiangular lines ([13,14]). Associated with a weighted adjacency algebra 

is a system of lines meeting with 2 intersection angles. Bounds are known for the 

number of such lines in real and complex n-space ([5]). Some examples discussed 

here achieve these bounds. 

In this work, we investigate the special case of symmetric cc's of rank 3, which 

are equivalent to strongly regular graphs (srg's), and weights with values • The 

only exceptions to this are certain group-theoretic examples which have non-real 

values in U4, the group of fourth roots of unity. The necessary definitions for this 

special case are given here. For the general theory the reader is referred to [8]. 

There are substantial differences, due to a sincere at tempt to make the present 

paper self-contained and no more complicated than necessary. 

Investigation of feasible regular weight parameter sets for this case shows that 

they are relatively rare in occurrence ([10]). This suggests that searching for 

classification theorems for regular weights on the known families and types of 

srg's is likely to be worthwhile. We begin this process in the present paper with 

two approaches. The first is to find examples which arise in connection with 

rank 3 group actions. The second is combinatorial in nature and results in the 

classification of regular weights on one infinite family of srg's. 

In Section 1, we give definitions 'and background information on srg's, weights, 

monomial representations, and 2-graphs. The second section introduces our first 

concrete example, a regular weight on the triangular graph T(5). This has been 

explicitly considered before and is mainly included for completeness. Section 3 

concerns examples related to rank 3 group actions. It includes a list of rank 3 

candidates, a discussion of an infinite family of regular weights connected with 

the symplectic groups PSp4(q) for q odd; and a description of a regular weight as- 

sociated with the group 2.L3(4). Regular weights on lattice graphs are addressed 

in Section 4, which contains our main result. We show a non-trivial one occurs 

only for even n, and is the tensor product of two weights whose coboundaries are 

regular 2-graphs with identical parameters. 
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1. P r e l i m i n a r i e s  

WEIGHTS OF FULL RANK 

1.1. STRONGLY REGULAR GRAPHS. 

Definition: A s t r o n g l y  r e g u l a r  g r a p h  (srg) is a regular graph which is neither 

null nor complete,  with the proper ty  tha t  the number  of vertices adjacent  to two 

distinct vertices x and y depends only on whether  or not x and y are adjacent.  

The  p a r a m e t e r s  of  an srg F are (n, k, A, p),  where n is the number  of vertices, 

k is the valency, A is the number  of common  neighbors to two adjacent  vertices 

and # is the number  of common  neighbors to two non-adjacent  vertices. 

The  c o m p l e m e n t  of an srg F is denoted by F, and is also s t rongly regular,  

with pa ramete r s  (n, n - k - 1, n - 2k + p - 2, n - 2k + A). For convenience, we 

write l -- n - k - 1 for the valency of F. 

Examples. 

(1) The  pen tagon  is s t rongly regular with pa ramete r s  (5, 2, 0, 1). 

(2) The  t r iangular  graph T(n) (n >_ 4) has unordered pairs from an n-set  as 

vertices, with two adjacent  iff they have an element in common.  The  srg 

pa rame te r s  for T(n) are ((.~), 2(n - 2), n - 2, 4). The  complement  of T(5)  

is the well-known Petersen graph. 

(3) The  latt ice graph L2(n) (n >_ 3) is pictured as an n x n grid. The  vertices 

are the n 2 lat t ice points,  with two adjacent  iff they have one coordinate  

in common.  The  srg pa ramete r s  for L2(n) are (n 2, 2(n - 1), n - 2, 2). 

Notation. Let F be an srg with identity, adjacency and non-adjacency relat ions 

given by f0, f l ,  f2 respectively. Let t ing X be the ver tex set, we say (x, y, z) E X 3 

is a tr iangle of t y p e  (i , j ,k) if (x,y) C fi, (y,z) �9 f j  and (x ,z )  �9 fk. Denote  

by Ao = In,A1 and A2 the adjacency matr ices  of the three relations. The  

a d j a c e n c y  a l g e b r a  .4 is the linear span over C of Ai, i �9 I ,  where I is the 

index set {0, 1,2}. The  i n t e r s e c t i o n  n u m b e r s  for the adjacency a lgebra  are 

k defined by the s t ructure  constants  Pit 

2 
k Ai" Aj = ~-~pijAk. 

i=0 

Observe tha t  the pa ramete r s  k , A , #  are the s t ructure  constants  P~ 2 
respectively. The  i n t e r s e c t i o n  m a t r i c e s  are Mj (j e I) defined by 

Ms := 
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The regular representation Aj ~-~ Mj is an isomorphism of ,4 onto a (commuta- 

tive) subalgebra of M3(C). This provides a useful tool for analyzing the adjacency 

algebra. Specifically, we make use of the fact that  ,4 is semi-simple, so it can be 

decomposed as a direct sum of simple ideals. The constituents of the standard 

character are linear since ,4 is commutative.  These are found using the 3 by 3 

intersection matrices, which have the same eigenvalues as the adjacency matrices. 

Knowing that  the multiplicities of the eigenvalues of Ai must be positive integers 

leads to an additional condition on potential parameter  sets for srgs. (See [1], [2] 

for details.) 

1.2. REGULAR WEIGHTS. ([8]) Let U4 be the set of fourth roots of unity. With 

respect to a given vertex set X,  we define a we igh t  w i t h  va lues  in Ua as a 

function w : X 2 ~ U4 with the properties: 

(1) w(x ,x )=  l Vx �9 X,  

(2) y) = x) e x .  

Equivalently, we may view w as a matrix indexed by X which is Hermitian and 

has unit diagonal. 

If w is a weight, then 5w : X 3 ~ Ua is defined by 

y, z)  := z) .  

Thus ~fw assigns a value to each triple of points or t r i a n g l e  (x, y, z). 

Let F be an srg with vertex set X and relations f~, (0 < i < 2). Given x E X,  

define $~.(x) := (y e X[(x,y) E f~}. We now define parameters  which link the 

weight w and the srg F. For x, z E X,  and ct E U4, set 

I {ye S,(x)nsj(z) l I 
Definition: If w is a weight with values in U4, then w is r e g u l a r  on F if for 

f~j (x, z, c~) is independent of the choice of (x, z) e fk. 

Note. As defined in ([8]), a weight may take on the value 0, provided it vanishes 

completely on some subset of the relations, and does not take on the value 0 

otherwise. The r a n k  of w is then defined as the number of relations on which 

w does not vanish. In our case, the definitions have been formulated so that  the 

rank is always 3 and this is what is meant by "full rank". The methods discussed 

here do, however, give rise to some regular weights which vanish on~ the srg or on 

its complement, and hence have rank 2. 
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Parameters. If w is regular on F, we write 0h (a  ) = 3i*j~(x, z, a). Then, given 

(x, z) �9 fk, 3~ (a) is the number of triples (x, y, z) of type (i, j ,  k) and weight c~. 

Observe that 3~ (a) is non-negative, integral, and bounded above by p~j. Also, 

~ (a) is invariant under switching. To switch w on a vertex x is to multiply row 

and column x by -1 .  

Viewing w as a matrix, form the entry-wise product 

Aj : = ~ o A j  

for each j .  These are the we igh ted  adjacency matrices. We define 

= E :  
a E U 4  

From [8], we have (i) the weighted adjacency matrices span a subalgebra of 

Mn(C). This we igh ted  a d j a c e n c y  a lgebra  is denoted A~; (ii) the 3~ are 

the structure constants for .A ~. Since ,4 "~ is semi-simple, the discussion in [7] of 

feasible traces applies to the trace character ~ of .A% The regular representation 

w ~ k Aj ~-~ M~ := (3~J)i,ke~ (J �9 I) 

as before is an isomorphism of commutative matrix algebras, and we make use 

of this in analyzing the constituents of ~. 

We call a regular weight w t r iv ia l  if for all indices j ,  A~ = •  

With the exception of Section 3.3, the weights considered here will have values 

in U2 = {• This means of course that w is real-valued and Hermitian, hence 

symmetric when viewed as a matrix. The properties listed below follow from the 

definitions when restricting to this case. In particular, if w is a weight with values 

in {4-1} and regular on the srg F, then the weighted intersection matrices must 

have the form 

Mo=I ,  M~= ( k  

Blank spaces indicate zero entries. 

Observations: See [8]. 

(1) 3~ �9 Z. 

1) (1) 
A , M~= C D . 
C l E F 
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(2) = 
(3) ~gj = ~3okj(1) = 6jk. 

(4) ~ =/~ij(1) = 6i jv i ,  where v~ is the valency of the graph of s  
k (5) IZ E _<v,j. 

(6) C = B l / k ,  S = D l / k .  

To see this last remark, note that for a fixed vertex x, the number of triangles 

(x, y, z) of type (2, 1, 1) and weight a is the same as the number of triangles 

(x, z, y) of type (1, 1, 2) and weight a. Counting these gives k C  = IB .  Similarly, 

k E  = lD.  

A set of feasible regu la r  weight  p a r a m e t e r s  for a given srg is the set of 

integers {A, B , . . . ,  F} which satisfy the constraints above and such that  the mul- 

tiplicities of the eigenvalues of M f  (j C I) are positive integers. Since the regular 

weight parameters are hounded by the srg parameters, a list of feasible regular 

weight parameters for a given srg is easily generated by computer. Furthermore, 

the well-known conditions on feasible srg parameters make it straight-forward to 

generate all feasible srg parameters up to a chosen maximum number of vertices. 

Weighted  adjacency  algebras. (See [7], [8] for more detail.) The weighted ad- 

jacency algebra .4 ~ is semi-simple, so the earlier discussion of decomposition 

into simple ideals applies to this case as well. The eigenvalues of A7 and their 

multiplicities are listed in a cha rac t e r -mu l t l p l i c i t y  table .  

The standard character ( decomposes into linear constituents: 

2 

= 

i = 0  

,4 ~ has a basis of pairwise orthogonal idempotents given by 

3 

(This is true of the adjacency algebra also, but we make use of it only in the 
n 

weighted case.) Observe that the matrix --ci is positive semi-definite, symmetric, 
zi  

with unit diagonal and is therefore the Gram matrix of a set of n vectors in zi- 

dimensional Euclidean space. We have a system of n lines in zi-space meeting 

with 2 intersection angles: 

cos01 = + ~i(A'~) , cos02 = + ~i(A~) . ---y- 
1 
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Delsarte, Goethals and Seidel give bounds for the number of lines in real and 

complex n-space meeting with 2 intersection angles ([5]). Some of our examples 

achieve these bounds. 

1.3. MONOMIAL REPRESENTATIONS. The so-called r a n k  3 srg's, which are 

afforded by certain group actions, are discussed in Section 3. Here, we give 

background information on monomial representations which is needed later. ([11] 

is one of many good sources for information on group representations.) 

A m o n o m i a l  m a t r i x  is a square matrix with exactly one nonzero entry in each 

row and column. A m o n o m i a l  r e p r e s e n t a t i o n  of a group G is a representation 

of G into a group of monomial matrices. Associated with a monomial representa- 

tion is the u n d e r l y i n g  p e r m u t a t i o n  r e p r e s e n t a t i o n .  This is determined by 

replacing all nonzero entries by l ' s  in each matrix of the representation. If this 

underlying action of the group is transitive, we say the monomial representation 

is transitive. 

Let F be a transitive monomial representation of a finite group G. Then F 

is equivalent to the induced representation of a degree 1 representation A of 

a subgroup H ([11]). (In our case, H will be the stabilizer of a point in the 

underlying group action.) Let n = G : H and fix a transversal { t l , t 2 , . . .  ,tn} 

to H in G. Denote the induced representation by Aa. For g C G, At(g)  is the 

matrix with ij entry 

),~ 
where A~ = A(h) if h E H and A~ = 0 otherwise. 

1.4. 2-GRAPHS. 

Definition: A 2 - g r a p h  is a set of vertices X and a distinguished set of coherent 

triples A C_ X 3 with the property that  every 4-subset of X contains an even 

number of triples in A. 

Every graph gives rise to a 2-graph as follows ([13, 15]). Let X be the vertex 

set and think of the graph as a function f : X x X ~ {0, 4-1} where the value 

assigned to adjacent pairs is +1; non-adjacent pairs -1 ;  and the diagonal is 

mapped to 0. Assign a value to each triple (x, y, z) by ~f  : X 3 --+ {0, +1} with 

~f(x, y, z) = f(x, y)f(x, z)f(y, z). 

Then define 

A : :  { (x ,y ,z )  I 6 f ( x , y , z )  = --1}. 
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This 2-graph is sometimes referred to as 6f. The (0, -t-1) adjacency matrix for f 

is said to r ep re sen t  the 2-graph, though it is by no means unique in that regard. 

Any matrix obtained from it by switching represents the same 2-graph. 

Definition: A 2-graph r is r egu la r  if and only if every pair of vertices is 

contained in the same number of coherent triples. 

Srg's are by definition not complete, but we may define a regular weight on 

the complete graph similarly. These regular weights are equivalent to regular 

2-graphs: take the set of coherent triples to be all those with weight -1 .  

The p a r a m e t e r s  of a non-trivial regular 2-graph are (n, a, b), where n is the 

number of vertices, a is the number of coherent triples containing a given pair 

and b is the number of coherent 4-sets containing a given coherent triple, where 

a 4-set is coherent if and only if all of its 3-subsets are. It is shown in [15] that  

both n and a are even. 

2. E x a m p l e  

The complement of the triangular graph T(5)--  known as the Petersen graph--  is 

realized in euclidean 3-space by the faces of a regular icosahedron. This example 

in its geometric context is discussed by J.J. Seidel in [12], where he calls it "the 

prototype for weighted coherent configurations". D.G. Higman describes the 

same example explicitly in the context of monomial representations ([8]). 

Take the ten lines joining the centers of opposite faces as vertices, and call two 

vertices adjacent if and only if they meet at the smaller of two possible angles. 

Call this graph F. To define a regular weight on F, first choose a direction for 

each of the ten lines, x l , . . .  ,xl0 and label the faces x +, x~- according to this 

orientation. Define 

J" +1 if like faces meet at acute angles, 
x j )  ! - 1  if unlike faces meet at acute angles. 

(What is meant by this is that  the angle between the line segments drawn from 

the faces to the center of the icosahedron is acute.) This is, up to switching, the 

only non-trivial regular weight on F ([8]). 

A proof of regularity relying only on the geometry is given in [10]. We outline 

the proof as follows. Consider (a, xj) e ]k, and suppose we want to calculate 

~w(a, xi, xj) for some x~. Observe that w(aq, x r) -~ qr a n d  w(aq, x~) ~- as for 

some choice of r and s, that  is whatever makes the acute angle with aq. Then 
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~fw(a, x i , x j )  depends only on whether x~ and x~ meet at an acute angle not 

on the actual signs r and s. It follows from the symmetry of the figure that 

~ ( a ,  x i , x j )  ( l ,m E I) is independent of the choice of (a, xj)  E f k .  

Intersection matrices. 

M ~ =  0 , M ~ =  2 . 
2 0 - 

We get the (linear) characters and their multiplicities from M~ and M~. The 10 

by 10 weighted adjacency matrices are given in [8]. 

Character-multiplicity table for F. 

4~ 

4~ 

I A~ A~ z~ 

1 0 - 3  4 

1 ~ 2 3 

I - v ~  2 3 

Remark: The line system associated with this example realizes the special bound 

given in [5], with 10 lines meeting in real 3-space. 

3. T h e  g r o u p  case  

Let G be a finite group which acts transitively on a set X with symmetric orbitals. 

Then the orbitals are the basic relations for an association scheme, which has rank 

equal to the number of orbitals. (So, this gives rise to an srg when the number 

of orbitals is 3.) Alternatively, the number of orbits for the stabilizer of a point 

is 3. The action of G on X is equivalent to the action of G on the cosets modulo 

a point stabilizer. When it is convenient, we will view the group action as the 

latter. 

It is well known that  the centralizer algebra of the matrices in the permutation 

representation is a coherent algebra. That  is, the set of matrices in Mn(C) which 

commute with the matrices of the permutation representation is the adjacency 

algebra of the cc formed by the orbitals. Loosely speaking, the permutation rep- 

resentation "corresponds" to the srg via the centralizer algebra. The following 

theorem, quoted from [8], states the analogous fact for the weighted adjacency 
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algebra. It gives sufficient conditions for existence of regular weights on coherent 

configurations (cc's). We apply the theorem in the special case of rank 3, com- 

mutative cc's, and I,o (the set of indices on which w does not vanish) equal to 

{0, 1,2}. 

THEOREM (D.G. Higman): The centralizer algebra of a transitive monomial 

representation F of a finite group G is a weighted algebra A ~, where A is the cen- 

tralizer algebra of the underlying permutation representation, and w is a regular 

weight on the cc afforded by the underlying action of G with I~ = I t .  

In our case, we look for index 2 subgroups of a point stabilizer H to give rise 

to a regular weight with values • If A is such a subgroup, we let A be the 

linear representation of H given by A(h) = 1 if h E A and A(h) -- - 1  otherwise. 

Then F := A c is a monomial representation of G with underlying permutation 

representation which corresponds to an srg. By Higman's theorem, F gives rise 

to a regular weight w on the srg. It may be that w is trivial or has rank less than 

3 or has values other than • in the group of fourth roots of unity. 

3.1. RANK 3 CANDIDATES. A starting point in the search for concrete examples 

arising this way is the Atlas of Finite Groups ([4]) which contains character tables 

as well as information about rank 3 actions for many simple groups, including 

all sporadic groups and some members of each infinite family. The list of rank 3 

candidates below includes all Atlas groups which have (i) a rank 3 action with a 

point stabilizer having an index 2 subgroup, and (ii) irreducible character degrees 

in G or in 2.G which match the eigenvalue multiplicities of a set of feasible regular 

weight parameters for the associated srg. Where the degrees are in parentheses, 

(ii) has not yet been determined. A bar over the character degree indicates 

non-real character values. 

G G~ i n d e x  degrees -G degrees-2 .G 

A5 $3 10 3 + 3 + 4 

84(3) 33 :$4  40 5 + 5 + 3 0  

3} +2 : 2A4 

L3(4) A6 56 

$4(4) L2(16) :2  120 1 8 + 5 1 + 5 1  

Alo (As • As) : 4 126 9 + 42 + 75 

$4(4) ( A s •  136 3 4 + 5 1 + 5 1  

10 + 10 + 36 
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$4(5) 5~_+e: 4A5 

53 :(2 x A5)'2 

U4(3) 3~.+4.2S4 

G2(3) U3(3):2 

5 3 : (2 • A5)'2 

07(3) 2U4(3):22 

G2(4) U3(4) :2  

Fi22 2"U6(2) 

Fi23 O+(3) : $3 

WEIGHTS OF FULL RANK 

156 13 + 13 + 130 

11 

280 35 + 35 + 210 

351 78 + 91 + 182 

351 78 + 91 + 182 

2016 (378+ 819 + 819) 

3510 

137632 (5083 + 25806 + 106743) 

(429 + 1001 + 208( 

The first entry on the list affords the T(5) example discussed earlier. Examples 

are known for As, $4(3), L3(4), Alo,$4(5). $4(4) is work in progress, and the 

others, so far as the author is aware, are unknown. 

3.2. REGULAR WEIGHTS ASSOCIATED WITH S4(q). Consider the group 

Sp4(q) = {g C Gl4(q) I gEg t = E} where E = I2 

for q an odd prime power. Let G = S4(q), that is the image of Sp4(q) under the 

natural map Sp4(q ) ~ Sp4(q) / I -h ) .  G acts rank 3 on the totally isotropic 

lines of the symplectic geometry, with parameters 

(q3 + q2 + q +  1,q(q + 1 ) , q -  1, q+ 1), 

where two lines are adjacent iff they meet. We claim that the line stabilizer GL 

has an index 2 subgroup, and that the associated monomial character has rank 

3. It follows that there is a regular rank 3 weight on the srg. 

Fix a symplectic basis {el, e2, e - l ,  e-2}. Let L be the line {el) + (e2). Let L1 = 

(el) + (e-2), L2 --- (e - l )  + (e-2), and take (L, L1) and (L, L2) as representatives 

for the 2 non-trivial orbitals under the action of G. For each g E Sp 4 (q) we let 

denote the image of g in G. The line stabilizer GL is represented modulo {•  

by matrices of the form 

with B A  t symmetric and A non-singular. Write 
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so it is clear that  GL ~-- q3 : L2(q). (q - 1) where (q - 1) is the cyclic group F~q. 

Since q is odd, GL has an index 2 subgroup H, and we may describe H in the 

following way. Given an element g - t of Sp4(q), its image ~ in G 

(which is obviously in GL) is contained in H ~ det(A) is a square in F~q. 

We compute the rank 3 weight parameters ~ .  

Intersection matrices. 

0 1 0 ) 
M ~ =  q ( q + l )  0 + ( q + l )  , 

0 :t=q ~ 0 (000 1) 
M~ = +q2 0 , 

q3 0 •  1) 

"+" if q = 1 (mod 4) and " - "  if q - 3 (mod 4). 

Character-multiplicity table for $4 (q). 

(2 

r 

I A~ A~ 

1 0 3:q 

1 (q + 1)4~ +q2 

1 - (q  + 1)44 +q2 

Zi 
q3 + q  

1 (q2 1) 

+ 1) 

Line systems. Projection into either of the (~A)-dimensional  eigenspaces gives 

us a system of q3 + q2 + q + 1 lines in ( ~ ) - s p a c e .  The Gram matrix is given by 

n [ 
- -e~= I +  • Zl ~ /~1  q 2 j - 

In two cases, we find that this line system realizes the special bound of Delsarte, 

Goethals and Seidel ([5]). For q = 3, we have 40 lines in complex 5-space meeting 

at squared cosines �89 -~. For q = 5, we have 156 lines in real 13-space meeting 

at squared cosines ~, ~ .  The special bound applies only for q _< 9 in the real 

case, and for q _< 3 in the complex case. The absolute bound, which is O(qS), is 

in general much larger than the number of lines in our examples. 

Generalizing to S~,(q). We generalize the examples above by considering the 

action of G = Su,(q) on the maximal totally isotropic subspaces. (For 2n = 4, 
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these are the totally isotropic lines.) Of course, the action has greater rank 

for greater n. If  n is even, q odd, the stabilizer of a maximal  totally isotropic 

subspace has an index 2 subgroup. The rank, parameters,  etc. have yet to be 

investigated in this more general setting. 

3.3. REGULAR WEIGHTS ASSOCIATED WITH 2.L3(4). Let G be the projective 

special linear group L3(4). G permutes the ovals of PG2(4) in 3 orbits of length 

56. The action on each orbit has rank 3, affording in each case the unique srg F 

with parameters  (56, 10, 0, 2) ([6]). This is known as the G e w i r t z  g r a p h .  The 

stabilizer of an oval is isomorphic to A6. The three As's are non-conjugate in 

G, since each one intersects a different conjugacy class of elements of order 4 in 

G. Our notation in references to the characters and conjugacy classes of G will 

be consistent with that  of [4]. Note that  the action of G on its cosets modulo 

A6 is equivalent to the action on ovals. Since A6 has no index 2 subgroup, it is 

clear that  there is no monomial  representation of G with values +1 associated 

with this rank 3 action. Accordingly, we consider the double cover G = 2.G. The 

inverse image of an As splits in G, as can be seen from the character table. Thus 

G contains a subgroup H --- 2 • A 6. Let A < H, A -~ A6, and let ~ be the linear 

character of H with kernel A. We claim that  AG has rank 3 if A has non-empty 

intersection with the conjugacy class 4A. (It has rank 2 if A meets 4B or 4C.) It  

follows that  there are regular weights of rank 2 and rank 3 on F. 

Remark:  The monomial  representation of G induced from A is faithful 

( - / 6  maps to - /56) .  The underlying permutat ion representation is the action of 

G on cosets modulo H,  and is transitive. This action is equivalent to the action 

of G on cosets modulo A, hence affords the Gewirtz graph. 

To compute the rank of A G, we work with the group theory language Cayley 

([3]). Given generators for G as a matr ix  group, it is not difficult to find three 

non-conjugate copies of A6 inside G using Cayley, and to compute the rank of 

A v and the character values explicitly in each case. Since G < 2.U4(3), which is 

a quotient group of K :-- 6.Ua(3), we begin with Lindsey's generators for K from 

[9], which are 6 by 6 matrices with entries in Q[a], a = e 2"i/3. 

Let (.9 = Z[a], the ring of integers in Q[a]. K is a group of linear trans- 

formations of an O-module M. Since the ideal (1 - a)  contains the integer 3 

and is irreducible in O, we find that  O/(1  - a)  -~ F3, thus the action of K on 

M / ( 1  - a ) M  is equivalent to the action on a module over F3. Replacing entries 
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in the generators for K by appropriate elements of F3, we get 6 by 6 matrix 

generators for the group 

g / (a I )  ~- 2.U4(3). 

To find a subgroup of this group which is isomorphic to 2.L3(4), we enter the 

matrices into Cayley. The action of this group on the set of 1-dimensional sub- 

spaces ((1, 0, 0, 0, 0, 0)) :U~(3) provides a permutation group isomorphic to U4(3). 

(Computations are much faster in permutation groups.) A subgroup isomor- 

phic to La(4) is generated by elements from a Sylow 3-subgroup and a Sylow 

7-subgroup. Finally, we pull back to the matrix group to get the generators 

for G. 

Generators of 2. L3 (4). 

S = 

T = 

I 
1 1 -1 -1 I 1 1 1 1 

-1 1 
1 -1 -1  -1  ' 

1 -1  
1 

1 i i } - 1  - 1  1 
1 - 1  - 1  

- 1  1 
1 1 

- 1  - 1  1 - 1  

Note the center of G is ( - I ) .  By the same method, a subgroup of G isomorphic 

to A6, and intersecting the conjugacy class 4A, is found and pulled back to G to 

get H -~ 2 x A6. This group is generated by 

- I ,  

1-1-1)(11-11 / 
1 - 1  - 1  - 1  - 1  - 1  - 1  

- 1  1 - 1  1 - 1  - 1  1 1 

1 -1  - 1  11 ' - 1  - 1  1 1 - 1  1 " 
1 1 - 1  '--1 1 - 1  1 

- 1  - 1  1 1 

We next define A as described above, and calculate the character values of 

X = AG by: 

G :  H Z A(x) 
x ~ -  [Cd ~ e c , ~ n  
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F 

where Ci is the ith conjugacy class of G and •i is the value of X on that class. 

From the character table for G, we find X = Xll + X12 + X15. Thus X has 3 

irreducible constituents with degrees 10, 10 and 36. Hence the regular weight w 

associated with X has rank 3. The degree 10 constituents are complex conjugates, 

which implies that  w is not real-valued. In fact, A~' has entries 0, =t=i and A~' has 

entries O, +1. 

Intersect ion matrices.  

M{ = ( 1 0  

Character-mult ipl ici ty  table f o r  

0 , M ~ =  9 0 .  
9 45 0 4 

I A~' A~ zi 

(1 1 0 - 5  36 

(2 1 9 10 

(3 1 -2VC7 9 10 

4. R e g u l a r  w e i g h t s  o n  l a t t i c e  g r a p h s  

The regular weights described in this section are not examples which arise in the 

group case. While the lattice graph L2(n) is afforded by a rank 3 action of En 12, 

the regular weights obtained in this way are trivial. 

4.1. A REGULAR WEIGHT ON L2(6). Let F be the lattice graph L2(6). Let 

A1, A2 be adjacency matrices of F and F respectively. Put  

C = 
/i1111 i/ 1 0 - 1  1 - 

1 - 1  0 - 1  " 
- 1  1 - 1  0 
- 1  - 1  1 1 

C is called a conference matrix of order 6 (C 2 = 5I), and represents a regular 

2-graph on 6 vertices ([13]). Number these according to the rows and col!lmns of 

the lattice graph. Put  

w = ( I + C ) @ ( I + C )  

= I | 1 7 4 1 7 4 1 7 4  
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Now w is a matrix of the same size as the adjacency matrices, so we may define 

A~' = w o Ai for each i E I. 

PROPOSITION: w is regular on L2(6). 

Proo~ We have 

A~ = I | I ,  (A~') 2 = 10A~ + 2A~', 

A I ~ = I | 1 7 4  A I~'A 2~'=5A~, 

A~ = C | C, (A~) 2 = 25A~'. 

This gives us the weighted intersection matrices 

(1) (i) M ~ ' =  10 0 , M~ ' =  5 
5 25 O 

which define k {~ij}O~_i,j,k~_2" We get 

/3/~(+1) = 1 k + 

k and 3~(1) - j3~(-1) =/3~.  We check easily recalling that  13~(1) + 13~(-1) = p,j 

that B/~ and p~j have the same parity, so tha t /3~(+1)  is an integer. II 

Character-multiplicity table for L2(6). 

I A'~ A~ zi 

~'1 1 0 - 5  18 

~2 1 2v~  5 9 

~3 1 - 2 V ~  5 9 

4.2. REGULAR WEIGHTS ON L2(n). We quote a theorem from [15], used in 

the proof of the theorem below. A graph is s t r o n g  if for any pair x, y E X the 

number of vertices adjacent to exactly one of x or y depends only on whether x 

and y are adjacent. 

THEOREM (D. E. Taylor): Suppose f is a graph with (0, :kl) adjacency matrix 

A. Then the 2-graph 6 f is regular if and only if f is a strong graph and the 

minimal polynomial of A is quadratic. 

The following theorem shows that all non-trivial regular rank 3 weights on 

L2(n) are obtained from regular 2-graphs as in the example above. 
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THEOREM: I f w  is a non-trivial regular weight with full support on the lattice 

graph L:(n) then n is even and w = ~dl(~Cd2, where ~w1 and ~w2 are regular 

2-graphs with the same parameters. 

Proof Let w be a rank 3 weight regular on the lattice graph r = L2(n). Let 

M~' -- M~'(1) - M ~ ( - 1 )  (i = 1, 2) be the intersection matrices for the weighted 

adjacency algebra .A ~, and let C~', C~ be the weighted n 2 • n 2 adjacency matrices 

for r and r respectively. Number the vertices of r along rows and down columns. 

The adjacency matrices for r have the form 

C1 = I |  ( J -  I)  + ( J -  I)  @ I,  

C2 = ( J -  I)  | ( J -  I), 

where I and J are the n x n identity and all ones matrix respectively. Each of 

CI and C2 contains n 2 blocks, where each block is an n by n matrix equal to 

either I or J - I. We may number the rows and columns of blocks from 1 to n 

and refer to the i j-block of the matrix. 

We may assume that w is switched so that non-zero entries in the first row and 

column are +1. The ordinary intersection matrices for F are 

( 1 ) 
M I =  2 ( n - l )  n - 2  2 , 

n - 1 2(n - 2) 

. - 1 2 ( n  - 2) . 
M ~ =  ( n - l )  ~ ( n - 1 ) ( n - 2 )  ( n - 2 )  ~ 

Put  

and 

where 

( 1) 
M~(1) -- 2 ( n -  1) a , 

c 

( 1) 
M~ = 2 ( n -  1) A , 

C 

A =  2a - (n  - 2),  

B =  2 b -  2, 
C =  Rib-l) 

2 

M~(1) -- c 
n -  1) 2 e 

C 
M ~  = (n  - 1) ~ E 

D =  2d - 2 (n  - 2),  
E-'- D(n-1) 

2 ' 

F :  2 1 -  ( n -  2) 2 , 
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and a, b, d, f lie between 0 and the corresponding entries in Ma and M2. Now 

c E Z ~ b i s e v e n  or n i s o d d .  But 0 < b < 2, and we may take 1 < b < 2, 

replacing A~' by -A~' (i = 1, 2) if necessary. We first show that assuming b = 1 

leads to a contradiction. 

Suppose b = 1. Then c = ( n - 1 ) / 2 ,  and n is odd. We claim that  every 

rectangle in F has 3 sides of equal weight. (Or, every rectangle has either one 

or three sides of weight +1.) To see this, choose non-adjacent vertices x and 

z. There are 2 triangles ( x , y , z )  of type (1,1,2), and they form a rectangle 

(x, Yt, z, Y2) in F. Since b = 1, one of these must have weight 1 and the other 

weight -1 .  So the rectangle with vertices x, yl, z, Y2 has the property 

~(x, y,) = ~(u, ,  z) .: :. ~(x, u2) # ~(u2, z), 

proving the claim. We will call this rectangle property "RP". 

Given adjacent vertices x and z, c = (n - 1)/2 implies that half of the triangles 

(x, y, z) of type (2, 1, 1) have weight 1 and hag have weight - 1 .  Reordering the 

columns if necessary, we may assume that 

1 if 2 < i < n+l 
w(n  + l , n  + i) = 2 , 

- 1  if ~+a < i < n. 
2 

Consider rectangles with vertices n + 1, 1, i, n + i. By RP, we have 

- 1  i f 2 < i < " + l  
w ( i ,  n + i )  = 2 , 

1 if ~2-~ < i < n. 

Note in particular that w(2, n + 2) = -1 .  Set ai = w(n  + 2, n + i) (3 < i < n). 

Applying RP to rectangles with vertices 2, n + 2, i, n + i we have 

{ 2 '  w ( 2 , i ) =  - a i  i f 3 < i < " + l  

Now consider triangles (1, i, 2) and (n + 1, n + i, n + 2) of type (1, 1, 1). Clearly 

6w(1, i ,  2) = - 6 w ( n  + 1,n  + i , n  + 2)(3 < i < n). 

But then 
a = I(i 1 6 , ~ 0 , i , 2 ) =  1}1 

= I{i [ 6o.,(n + 1,n + i , n  + 2 ) =  -1}1 

= n - 2 - a .  
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So 2a = n - 2, contradict ing the fact tha t  n is odd. Thus  b = 1 is impossible.  

We have b = 2, which forces B = 2 and C = n -  1. Thus  all tr iangles 

of types (1, 1, 2) and (2, 1, 1) have weight 1. We claim tha t  all rectangles in F 

have an even number  of sides with weight +1. Given x and z non-adjacent ,  

consider tile 2 tr iangles (x, y, z) of type (1, 1, 2). Since bo th  have weight +1,  

w(x, yl) = "~(Yl, z) r w(x, y2) = w(y2, z). Call this new rectangle p roper ty  

"RP" .  

Let Cij, Cij be t h e / j - b l o c k s  of CT, C~ respectively. We will show there are 

matr ices  P and Q such tha t  

C~ : I |  

C~ = Q |  

STEP 1: Show Cli = 1(2 < i < n) and Cii(1,j)  = 1 (1 < i < n -  1, 2 <_ j <: n). 

Let p = w ( i n +  1, i n + j ) ,  q = w(j, i n + j ) .  Using triangles (1, j ,  i n + j )  and 

(1, in + 1, in + j) which must  have weight +1 it is clear tha t  p = q = 1. Thus  

Ct#+l ( j , j )=~z( j ,  i n + j ) =  1 ( l _ < j _ < n , l < i < n - 1 ) .  

Also, p = 1 implies 

C i + l , i + l ( 1 , j ) = w ( i n + l , i n + j ) = l  ( 2 < _ j < n ) .  

STEP 2: Show tha t  D = 2A. Consider tr iangles (1, z, in + 2) of type  (2, 1, 2). 

Using Step 1 we have, for tr iangles (2, x, in + 2) and (in + 1, y, in + 2) of type  

(1, 1,1), 

d =  [{z [ ~w(1, z, in + 2) = l}l 

= l{x l ~o(x, in + 2) = l}t + l{y l w(in + 2, y) = l}l 

= [ { x [ & o ( 2 ,  x, i n + 2 ) = l } i + I { y i S a ~ ( i n + l , y ,  i n + 2 ) = l } [  

= 2a. 

So D - -  2 d -  2 ( n -  2) = 4 a -  2n + 4 = 2 ( 2 a -  n + 2) = 2A. 

STEP 3: Show Vii = e l l  (1 • i < n), Cij = 'l-r1 (i 7 s j). By Step 1, 

w(j, in + j)  = w(k, in + k) = 1. 
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By RP applied to rectangle (in + j,  j, k, in + k ), 

, , ( j ,  k) = ,oCin + j ,  in + k) (0 < i < n - 1). 

Thus  Cii = C n  (1 < i < n).  Again by Step 1, 

w(in + 1, in + k) = w( jn  + 1, j n  + k) = 1, 

SO 

R P  ==:} w( in+ l , j n +  l ) = w ( i n + k ,  j n + k )  (O<_ir  j < n - 1 ) .  

Hence Cij(1, 1) = Cij(k, k) (1 < k < n), and we have Cii = :t:I (i ~ j ) .  

STEP 4: Show tha t  F = A 2. Consider the (n - 2) 2 triangles (1, in + j,  n + 2) of 

type  (2, 2, 2). Let  p = w( in+2 ,  in+j ) ,  q = w(n+2 ,  in+2) and s = w(n+2, in+j ) .  

Using step 2, 

q = l  r 6 w ( 1 , i n + 1 ,  n + 1 ) = l .  

Thus  I{i t w(n + 2, in + 2) = 1}1 = a. Likewise, 

p = l  

Hence ]{j I w(in + 2,in + j )  = 

s = 1 r q = p. Therefore,  

6w(1,j, 2) = 1. 

1}1 = a. Since 5w(in + 2, n + 2, in + j )  = 1, 

f = I{in + j  I * ~ ( 1 , i n + j , ~  + 2) = 1} I 

= l { { i , j } l q = p = l } l  + I{{i,J} I q = p = - l } ]  

= a s +  ( n - 2 - a )  2 

= 2a 2 - 2a(n - 2) + (n - 2) 2. 

Now F -- 2 f  - (n - 2 )  2 = (2a - (n - 2)) 2 = A 2. 

Define the mat r ix  Q by 

Q(i , j )  = Cij(1,1)  

Q(i ,  i) = o. 

(i # j), 

Set P = e l l  , and observe tha t  P(i, i) = 0 for 1 < i < n. We have shown tha t  

C ' ~ = I | 1 7 4  



Vol. 95, 1996 WEIGHTS OF FULL RANK 21 

STEP 5: Show C~ ~ = Q @ P. By Step 2, we have 

w(in + k, in + l) = w(jn  + k, j n  + l) = P(k,  l), 

,,,(in + k, j n  + k) = ~( in  + l, j n  +.t) = Q(i + 1, j  + 1). 

Now, triangle (in + k, in + l , jn  + l) has type (1, 1, 2), so 

w(in + k, j n  + l) = P(k , l )Q(i  + 1, j  + 1). 

Thus -Cij(k,l) = P(k , l )Q( i , j )  ~ -Cij = Q( i , j )P .  Hence C~' = Q @ P. 

It remains to show that  wl := I + Q and w2 := I + P are matrices of regular 

2-graphs with identical parameters. From M~ we know that 

(C~') 2 = 2(n - I)I + A(CT) + 2(C~'). 

Thus 

I | p2 + Q2 | I + 2Q | P = 2 ( n - 1 ) I , 2  + A I  N P + AQ N I + 2Q N P 

which implies that 
p2 = ( n -  1 ) I +  AP, 

Q2 = (n - 1)I + AQ. 

By Taylor's theorem, P and Q are matrices of regular 2-graphs, and it follows 

that n must be even. Both regular 2-graphs have the same equation, hence the 

same parameters. We now have 

w = I + C ~ ' + C [ = W l |  

proving the theorem. | 

From steps 2 and 4 above we know the weighted intersection matrices associ- 

ated with w on F are (0 10) (0 0 1) 
- = - 2A M ~ =  2(n 1) A 2 , M~ 0 n 1 . 
0 n - 1  2A ( n - l )  2 ( n - 1 ) A  A 2 

Analyzing eigenvalues and multiplicities, there are two possibilities: 

(i) A 2 + 4(n - 1) is not a square. Then A = 0, the eigenvalues of C~' are 

0, + 2 v ~ -  1 with multiplicities n2/2, n2/4, n2/4. Here ~Wl and ~w2 are 
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conference 2-graphs of order n. Necessary conditions for the existence of 

conference 2-graphs are: (1) n -- 2 (mod 4) and (2) n - 1 is the sum of 

two squares ([13], [15]). The regular 2-graph associated with the example 

on L2(6) discussed earlier is of this type. 

(ii) A 2 + 4(n - 1) = s 2, for some positive integer s. Then  eigenvalues are 

A, A + s with multiplicities 

2(n - 1)n 2 n2(s 2 - 2(n - 1) - As) 
ml -- s2 , m2 = 2s 2 , 

n2(s 2 -- 2 (n - -  1) + As) 
m3 = 282 

Note that  A --- n - 2, s = n is always a solution, and it affords the trivial 

weight w --- 1. Other  examples of this type include the unique regular 

2-graphs with (n, A, s) = (16, 2, 8) and (n, A, s) = (28, 6, 12). (See [15] 

for more information about  existence.) 

Remark :  ~w is a regular 2-graph ~ A+2(n-1)+(n-1)A -- 2 + 4 A + A  2 

A = - 2  or A = n - 2. If A = n - 2 then bo th  8wl and 6w2 are trivial 2-graphs, 

hence ~w is trivial. If  A = - 2  then a = (n - 4) /2  and n are the parameters  of 

8wl (i = 1, 2), while (n 2 - 4) /2  and n 2 are the parameters  of ~w. 

5. D i s c u s s i o n  

In the group case, with nota t ion as in Section 3, the following three s ta tements  

are equivalent: (i) w is trivial; (ii) A c has one consti tuent of degree 1; (iii) G 

has an index 2 subgroup N such tha t  N o H = A ([10]). Condit ion (iii) is the 

reason why we use the group 2.L3(4) in tha t  example, ra ther  than  L3(4).2, when 

searching for a non-trivial regular weight. 

Feasible parameters  have been generated for regular weights of rank 2 or 3 on 

all srg's with n <_ 400 ([10]). For most  of these parameter  sets, existence of a 

regular weight is unknown. No example of a non-trivial  regular rank 3 weight on 

a Type  I srg ([1,2]) is known. 
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